Synthesis, characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution.

نویسندگان

  • Jin Su
  • Huai-Guo Huang
  • Xiao-Ying Jin
  • Xiao-Qiao Lu
  • Zu-Liang Chen
چکیده

In this study, organobentonites were prepared by modification of bentonite with various cationic surfactants, and were used to remove As(V) and As(III) from aqueous solution. The results showed that the adsorption capacities of bentonite modified with octadecyl benzyl dimethyl ammonium (SMB3) were 0.288 mg/g for As(V) and 0.102 mg/g for As(III), which were much higher compared to 0.043 and 0.036 mg/g of un-modified bentonite (UB). The adsorption kinetics were fitted well with the pseudo-second-order model with rate constants of 46.7 × 10(-3)g/mgh for As(V) and 3.1 × 10(-3)g/mgh for As(III), respectively. The maximum adsorption capacity of As(V) derived from the Langmuir equation reached as high as 1.48 mg/g, while the maximum adsorption capacity of As(III) was 0.82 mg/g. The adsorption of As(V) and As(III) was strongly dependent on solution pH. Addition of anions did not impact on As(III) adsorption, while they clearly suppressed adsorption of As(V). In addition, this study also showed that desorbed rates were 74.61% for As(V) and 30.32% for As(III), respectively, after regeneration of SMB3 in 0.1M HCl solution. Furthermore, in order to interpret the proposed absorption mechanism, both SMB3 and UB were extensively characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of As(V), Cr(VI) and Pb(II) from aqueous solution using surfactant-modified Sabzevar nanozeolite

The pollution of water environments is a challenging issue especially in developing countries. Contamination of drinking water with heavy metals has been reported in many parts of the world. Arsenic, chromium and lead are dangerous heavy metals and also common contaminants of drinking water. In this study, the capacity and performance of the surfactant-modified Sabzevar natural nanozeolite (SMS...

متن کامل

Removal of Tetracycline Antibiotic from Aqueous Solution Using Zeolite-X Modified by Pyridium Bromide Cationic Surfactant: A Laboratory Study

Background and Objectives: Antibiotics are among the pollutants that have entered uncontrollably in the environment, and lead to serious environmental problems such as disrupting aquatic ecosystems, and causing health problems for humans and other organisms.  Therefore, it is necessary to remove them from the environment. In the current study, zeolite modified by cationic surfactant of cetylpyr...

متن کامل

Optimization of Copper and Zinc ions removal from aqueous solution by modified Nano-bentonite using Response surface methodology

Presence of heavy metal ions in wastewater is an important public concern. Adsorption are commonly used technique to remove various pollutants, including the ions, from contaminated water sources. However, common methods for adsorption are not completely efficient at low ion concentrations and the adsorbent should be improved in order to reaching the acceptable levels of adsorption efficiency. ...

متن کامل

Removal of Crystal violet Dye from Aqueous Solution Using Surfactant Modified NiFe2O4 as Nanoadsorbent; Isotherms, Thermodynamics and kinetics Studies

The removal of crystal violet from aqueous solution by NiFe2O4 magnetic nanoparticles treated with sodium dodecyl sulfate was investigated. The modified magnetic nanoparticles were prepared by chemical reaction of a mixture of Ni+2 and Fe+3 ions mixture in aqueous solution at the presence of ammonia and then sodium dodecyl sulfate was utilized as an ionic surfactant to modified the obtained mag...

متن کامل

Thermal and chemical modification of bentonite for adsorption of an anionic dye

Raw bentonite (RB), a known low-cost versatile clay was used as an adsorbent. RB was treated thermally and chemically to increase its adsorption capacity. For thermal treatment (TTB), the bentonite was heated at 400 °C for 60 min, and for the chemical modification, its surface was treated by cetyltrimethylammonium bromide (CTAB) to prepare organo-modified bentonite (CTAB-B). The removal of Cong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 185 1  شماره 

صفحات  -

تاریخ انتشار 2011